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1. Introduction

Global warming is a concern of scientists around the world. Most of it is caused by human activities (anthropogenic
causes), as well as, by natural phenomena like El Nifio and La Nifia. The components of the climate are never in equilibrium
and are constantly varying. Therefore, for this complex system, any change in the components may result in a considerable
climate variation. Global warming can be one explanation for the trend of increasing natural disasters in recent years [1].
Therefore, the study of climate can help us in preventing these natural disasters, which usually cause a large number of
deaths and a great economic loss. From the perspective on the climatology, mathematical models are important tools.
These models are applied for a variety of purposes, like the study of the dynamics of the weather, projections of the future
climate, changes in the air temperature, among others. The study of contemporary climates incorporates meteorological
data accumulated over many years, such as records of rainfall, temperature, and atmospheric composition [2-4]. Thus, we
must properly define the fundamental variables in the sense to study this complex system. To accomplish this goal the
World Meteorological Organization (WMO) has defined, in Chapter 5 of Ref. [5], the main climatological surface elements,
such as temperature, pressure, wind direction and speed, relative humidity, and others. Progress in weather forecasting and
in climate modeling has been significant in recent years [6]. According to Ref. [7], Numerical Weather Prediction (NWP)
has been the key to this success, because it uses the power of computers. Most of these models use systems of differential
equations based on the laws of physics, fluid motion, and chemistry, and use a coordinate system which divides the planet
into a 3D grid. Winds, heat transfer, solar radiation, relative humidity, and surface hydrology are calculated within each grid
cell, and the interactions with the neighboring cells are used to calculate the atmospheric properties in the future.

Considering the number of fundamental variables and a large possibility of their applications, in this paper we restrict to
identify and quantify cross-correlation between air temperature and relative humidity. For this purpose we take the database

* Corresponding author at: Computational Modeling Program - SENAI CIMATEC 41650-010 Salvador, Bahia, Brazil.
E-mail address: gfzebende@hotmail.com (G.F. Zebende).

0378-4371/© 2011 Elsevier B.V. Open access under the Elsevier QA license.
doi:10.1016/j.physa.2011.12.015


http://dx.doi.org/10.1016/j.physa.2011.12.015
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:gfzebende@hotmail.com
http://dx.doi.org/10.1016/j.physa.2011.12.015
http://www.elsevier.com/open-access/userlicense/1.0/
http://www.elsevier.com/open-access/userlicense/1.0/

R.T. Vassoler, G.F. Zebende / Physica A 391 (2012) 2438-2443 2439

of different cities around the planet, defined by geographic coordinates (latitude, longitude, and elevation). Air temperature
and relative humidity are variables that are still widely studied [8-12], but not from the point of view of the DCCA cross-
correlation exponent ppcca [13]. It is noteworthy that, ppcca is defined in terms of the DFA and the DCCA method [14,15],
briefly describe in the next section.

2. Discussion

In time series analysis there are some well-known paths to follow [16-18], thus if the time series exhibit complex
behavior such as self-affinity, we can apply new strategies for its analysis [19-22]. By this point of view, one of the most
frequently cited method to analyze time series of complex problems is the detrended fluctuation analysis (DFA) [14]. This
method provides a relationship between Fpga () (root mean square fluctuation) and the scale n. DFA method has been very
efficient at detecting long-range auto-correlations embedded in a patch landscape and also avoiding spurious detection of
apparent long-range auto-correlations. This fact can be proved by a great number of applications and citations [23-33].
However, if we have two time series, {y;} and {y;}, the analysis of cross-correlation can be applied, like in Refs. [34-42].
In this paper we are proposing analyze and quantify cross-correlation for climatological data, specifically between time
series of air temperature and relative humidity (daily average values). We adopt the recently proposition implemented by
Zebende [13], based on the Detrended Cross-Correlation Analysis method (DCCA) [15].

The DCCA method is a generalization of the DFA method and is based on detrended covariance. This method is designed
to investigate power-law cross-correlations between different simultaneously recorded time series in the presence of
nonstationarity. Therefore, for two time series of equal length N, we compute two integrated signals R, = ZL] y; and

R, = Y.y, where k = 1,...,N.In the next step we divide the entire time series into N — n overlapping boxes,
each containing n + 1 values. For both time series, in each box that starts at i and ends at i + n, we define the local
trend, Ry and R, ; (i < k < i+ n), to be the ordinate of a linear least-squares fit. We define the detrended walk as the
difference between the original walk and the local trend. Next we calculate the covariance of the residuals in each box
f2eca(m, i) = 1/(n+1) Y, (R — Rii) (R, — R, ;). Finally, we calculate the detrended covariance function by summing over
all overlapping N — n boxes of size n:

N—n
Focea(m) = (N —m)~! Zf[?cc;\(n, ). (1)
i=1

When only one random walk is analyzed, (Rx = R}), the detrended covariance FéCCA(n) reduces to the detrended variance
F2.,(n) used in the DFA method. If self-affinity appears, then F2..,(n) ~ n*. DCCA has been applied in many situations
[43-48]. The A exponent quantifies the long-range power-law cross-correlations and also identifies seasonality [46], but A
does not quantify the level of cross-correlations.

To quantify the level of cross-correlation, we can apply the DCCA cross-correlation coefficient [13], defined as the ratio
between the detrended covariance function F3.., and the detrended variance function Fpg, i.e.,

2

FDCCA 2
—_ . (2)
Foragy;) Foragy;)
Eq. (2) leads us to a new scale of cross-correlation in nonstationary time series. It is to be noted that in Ref. [13] the
Eq. (2) was typed incorrectly. The value of ppcca ranges between —1 < ppcca < 1. A value of ppcca = 0 means there
is no cross-correlation, and it splits the level of cross-correlation between positive and the negative case (see Table 1 in
Ref. [13]). Exponent ppcca has been tested on selected time series, simulated and real cases, and has proved to be quite
robust.

PpccA =

3. Data and results

Taking into account the values of the successive differences, Podobnik and Stanley [15] find that there are power-law
autocorrelations (by DFA) and power-law cross-correlations (by DCCA) between these time series, and F§CCA (n) presents a
negative value for every n. However, to present their results (Fig. 2 of Ref. [15]) Podobnik and Stanley considered only the
absolute values of the successive differences |{y;,; — y;}|. In addition to the above results, they find that both time series
show sudden bursts of large changes. Nevertheless, these results of cross-correlations analysis were obtained from an only
city and do not predicted possible changes in terms of location (latitude, longitude, and elevation).

In order to amplify the study of cross-correlation between air temperature and relative humidity, we propose here
measure the value of ppcca as a function of n (the time scale) for more cities. In this paper we analyze the successive
differences of relative humidity {y;;1 — y;} and air temperature {y§+1 — i}, differently than was proposed in Ref. [15, Fig. 2],
i.e., the absolute values of the successive differences. This choice was made simply because we can see directly whether
the time series are anti cross-correlated. If we analyze absolute values of the successive differences, only positive (or null)
values of cross-correlation can appear (see Fig. A.1(0)). Thus, here we can see directly what kind of cross-correlation exists
between air temperature and relative humidity (positive, negative, or null cross-correlations), as well as quantify such cross-
correlations in function of time scale by the DCCA cross-correlation coefficient ppcca. Our data were obtained from the
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Val De Caes (BRA) (1.4°S, 48.5°W), elev: 16m
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Fig. A.1. (Color on line) DCCA cross-correlations analysis for the time series of air temperature and relative humidity in the case of the city of Val De Caes
(BRA) (1.4°S, 48.5 W), elev: 16 m. In this figure we show the original time series for air temperature (red) and relative humidity (black) (a), the DFA analysis
for successive differences of the relative humidity () and the air temperature (o) (b), the DCCA cross-correlation analysis (M) (c), and the value of ppcca
in function of n (M) (d). Here we also present (cases b, ¢, and d), the results for cross-correlation analysis in terms of the absolute values of the successive
differences (symbol + line), as was proposed by Podobnik and Stanley [15].
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Fig. A.2. DCCA cross-correlation coefficient ppcca between air temperature x relative humidity: (a) corresponds approximately to latitude 40° (USA),
(b) corresponds approximately to latitude 40° others countries, and (c) others latitudes. The vertical lines corresponds to 90 and 365 days respectively
(in time scale).

Weather Underground database [49], a committee that monitors conditions and forecasts for locations across the world.
Therefore, for a given locality, we obtain the daily average values of air temperature and relative humidity, recorded from
01 January 1997 to 30 November 2010. Fig. A.1 shows an example for DCCA cross-correlation calculation. In this figure we
can see: (a) the original time series of the air temperature (o) and the relative humidity (x), (b) the DFA auto-correlation
analysis, (c) the DCCA cross-correlation analysis, and lastly, (d) the value of the exponent ppcca, as a function of n. This figure
also present, for comparison with Ref. [15], the analysis take in account the absolute values of the successive differences
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Table A.1
Mean values of ppcca, With seasonal components.
Locality Week Month Season Year >year
Quito (ECU) —0.31 —0.32 —0.35 —0.35 —-0.33
Nairobi (KEN) —0.38 —0.35 —0.36 —0.34 —0.33
Medan (IDN) —0.81 —0.81 —0.80 —0.80 —0.80
Changi (SGP) —0.62 —0.62 —0.64 —0.64 —0.65
Val De Caes (BRA) —0.47 —0.49 —0.50 —0.52 —0.53
Libreville (GAB) —0.46 —0.44 —0.40 —0.30 —0.22
Malé (MDV) —0.46 —0.44 —0.44 —0.41 —0.40
Bariloche (ARG) —0.27 —0.26 —0.28 —0.43 —0.66
Puerto Montt (CHL) —0.01 0.03 0.05 —0.10 —0.36
Wellington (NZL) —0.02 0.08 0.10 0.05 —0.06
Hobart (TAS) g —0.25 —0.20 —0.20 —0.26 —0.36
Mexico city (MEX) —0.40 —0.39 —0.37 —0.29 —0.12
Tegucigalpa (HND) —0.37 —0.33 —0.31 —0.32 —0.28
San José (CRI) —0.37 —0.37 —0.40 —0.43 —0.44
Havana (CUB) —0.13 0.03 0.09 0.15 0.24
Jeddah (SAU) —0.21 —0.17 —0.13 —0.11 —0.14
Hilo Hawaii (USA) —0.24 —0.16 —0.17 —0.15 —0.09
Chek Lap Kok (HKG) —0.06 0.08 0.11 0.15 0.25
Hanoi (VNM) —0.27 —0.08 0.01 0.05 0.12
Owen Roberts (CYM) -0.19 —0.09 —0.06 —0.03 0.03
Nouakchott (MRT) —0.68 —0.67 —0.64 —0.38 0.00
Denver (USA) —0.69 —0.70 —0.69 —0.58 —0.44
Provo (USA) —0.46 —0.45 —0.45 —0.59 —0.78
Madrid (ESP) —0.16 —0.15 —0.15 —0.44 —0.74
Sofia (BGR) —0.32 —0.28 —0.29 —0.39 —0.54
Beatrice (USA) —0.15 —0.18 —0.18 —0.21 —0.26
Pittsburgh (USA) 0.00 0.01 —0.01 —0.04 —0.01
Columbus (USA) 0.08 0.10 0.09 0.01 —0.06
Kansas city (USA) —0.08 —0.09 —0.10 —0.09 —0.07
Chicago (USA) 0.08 0.09 0.09 —0.03 —0.20
St. Louis (USA) —0.02 0.01 0.01 —0.02 —0.06
Lisboa (PRT) —0.33 —0.38 —0.37 —0.43 —0.54
Roma (ITA) —0.03 0.02 0.03 —0.14 —0.38
Belgrade (SRB) —0.44 —0.43 —0.45 —0.49 —0.57
Akita (JPN) —0.14 —0.15 —0.17 —0.14 —0.12
Athens (GRC) —0.17 —0.11 —0.14 —0.37 —0.65
Tirana (ALB) —0.22 —0.07 0.01 —0.06 —0.17
Arcata (USA) —0.25 —0.18 —0.14 —0.08 0.03
Beijing (CHN) —0.20 —0.11 —0.10 0.10 0.38
Istanbul (TUR) —0.25 -0.19 -0.17 —0.28 —0.47
New York (USA) 0.15 0.14 0.12 0.16 0.26
Algiers (DZA) —0.41 —0.39 —0.36 —0.39 —0.49
Philadelphia (USA) 0.21 0.22 0.20 0.18 0.18
Forestdale (USA) 0.34 0.34 0.34 0.30 0.29
Tunis-Carthage (TUN) —0.37 —0.34 —0.33 —0.42 —0.60
Potosi (BOL) —0.43 —0.43 —0.42 —0.16 0.15
Belo Horizonte (BRA) —0.51 —0.51 —0.50 —0.39 —0.14
La Tontouta (NCL) —0.27 —0.13 —0.07 —0.07 —0.07
Beira (MOZ) —0.60 —0.50 —0.45 —0.39 —0.34
Townsville (AUS) —0.08 0.08 0.15 0.15 0.22
Taiti (PYF) —0.18 —0.11 —0.11 —0.06 0.03
Mean values —0.25 —0.21 —0.20 —0.21 —0.22

(symbol + line, cases (b), (c), and (d)). As previously tested [13], ppcca gives a great summary of the analysis proposed by
the DFA and DCCA methods, with the advantage of quantify the level of cross-correlation between these time series.

Now differently from Podobnik and Stanley [15], we can show the behavior of the cross-correlation between air
temperature and relative humidity as a function of n, thinking in terms of ppcca, see Fig. A.2. In this figure we can see different
types of cross-correlations depending on the city localization. In order to exemplify this statement (a more complete study
will be presented after, in Table A.1), we divide Fig. A.2 into three parts, which are: Fig. A.2(a), same latitude and same
country, clearly with the three types of cross-correlation, positive (O), negative (%), and null case (o); Fig. A.2(b), same
latitude and different countries, in this case we can see that for small values of n (the time scale) ppcca have approximately
the same negative value for Madrid () and Beijing (W), but for large values of n is positive for Beijing and negative for Madrid;
Fig. A.2(c), different latitudes and different countries, for small values of n the exponent ppcca is positive for Chicago (o) and
is negative for Belo Horizonte (v7), while for large values of n, ppcca tends to a same negative value.

In general, apart from these three types of cross-correlation registered in Fig. A.2, we identify seasonal components
(vertical lines in Fig. A.2). These seasonal components are much more complicated to be identified if we look only the value
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of Fpcca(n). For example, in Fig. A.2, we can identify a clear pattern at n = 365 (annual component), but depending on the
specific city, other types of seasonal components can arise, like in n = 90. In order to have a more complete view, we did
the analysis taking into account 51 cities, with distinct latitudes, longitudes, and elevations (see Appendix). Certainly, we
can identify all types of cross-correlation behavior, and identification of seasonality, in function of time scale.

4. Conclusions

Podobnik and Stanley in Ref. [15] found that DCCA analysis has F2.., negative for every n, for values of the successive
differences of air temperature and relative humidity. This assertion featuring an anti cross-correlation behavior between air
temperature and relative humidity for a given location. However, we cannot claim that the cross-correlations between air
temperature and relative humidity are negative for a specific place in the earth. In order to justify such proposition, we obtain
all types of cross-correlations between successive differences of air temperature and relative humidity, and quantified here
by ppcca. For example, the value of ppcca ranges from 0.34 (Forestdale, USA) to -0.81 (Medan, IDN). We should also enhance
here that, by the DCCA cross-correlation exponent, we can identify directly seasonal components, like presented in Fig. A.2,
vertical lines at n = 90 and n = 365 respectively. As a final test, as a curiosity, we calculate the arithmetic mean of the ppcca
in function of n, for all 51 cities (last line in Table A.1). In this case we find a anti cross-correlation trend with ppcca = —0.22.

Finally, we propose the application of the ppcca for cross-correlation analysis in climatological data, specifically in time
series of air temperature and relative humidity. Here, we introduce new cities and we show that, depending on the city
location, the cross-correlation can be negative, positive or null. We have noticed that it is the first time that the value of
cross-correlation between air temperature and relative humidity is quantified, by way of ppcca. Logically, this study can be
extended to treat other types of climatological data, due the generality of ppcca-
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Appendix. Complete list of the cities

Below (Table A.1), we present the complete study in terms of the exponent ppcca for 51 cities around the world. The
values contained in this table represents the mean values of ppcca taking the intervals:

4 and 7, week seasonality;

8 and 30, month seasonality;
31 and 90, season seasonality;
91 and 365, year seasonality;
> 365, long range seasonality.

In the last line of Table A.1, we print the mean value (between columns) for all 51 cities. These mean values have
pocca = —0.21. This value, for the global case, show a anti cross-correlated behavior.
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